Schlagwort: PCB

Einpressgehäuse MR16 PM

Einpressgehäuse MR16 PM

Einbau ohne Montagerahmen

Der MDT Präsenzmelder MR-16 kommt im Gehäuse, welches den Einbau in üblichen Montagerahmen für MR-16 beziehungsweise GU10 Leuchtmittel ermöglicht. Der Melder an sich gefällt mir, sowohl von der Applikation, der gebotenen Funktionalität als auch von der Detektionssicherheit. Andere von mir getestete Präsenzmelder von GIRA und B.E.G. haben mich diesbezüglich nicht überzeugen können. Was mir beim MR-16 Melder allerdings nicht gefällt, ist genau das was ihn Letzen Endes einzigartig macht – der Zwang ihn in einen oben erwähnten Montagerahmen einzusetzen. Ein solcher Rahmen trägt immer auf und stört (für meine Begriffe) die optische Erscheinung.
Um den Melder dennoch nutzen und sicher verbauen zu können bin ich auf die Idee gekommen ihn ohne entsprechenden Rahmen direkt in eine mit Gipskarton abgehangene Decke zu montieren. Mit dem originalen Gehäuse funktioniert dies allerdings nicht, also muss ein neues Gehäuse her.

Neues 3D gedrucktes Gehäuse für den MR-16 Präsenzmelder zur Direktmontage in Gipskarton Platten.

  • CAD Rendering

    Die Innenkonturen wurden 1 zu 1 vom originalen Gehäuse übernommen.
  • Fertig aufgebauter Melder

    Durch den upside-down Druck hat der später sichtbare “Ring” eine feine strukturierte Oberfläche.
  • Testeinbau

    Montierter Melder in einer GK-Platte.
  • Rückseite

    Der Programmier-Taster ist nach wie vor von der Rückseite zugänglich.
  • Blick ins Innere

    Die Elektronik sitzt perfekt im neuen Gehäuse, deutlich sichtbar die 3 PIR Sensoren und der blaue NTC Temperaturfühler.
  • 3D Drucker

    Gedruckt sind die Gehäuse auf einem Prusa i3 MK3S.
Das neue Gehäuse ist mit 10 axial angeordneten Rippen versehen, welche nach hinten konisch zulaufen. Diese Rippen ermöglichen ein sicheres Einpressen in Gipskartonplatten. Kritisch ist jedoch die wiederholte Montage in einer bereits „eingekerbten Bohrung“, spätestens nach dem dritten Einsetzen ist kein sicherer Halt mehr gegeben und der Melder droht auch dem Loch zu rutschen. Im Regelfall gibt es allerdings auch keinen Grund den Melder nach der Montage wieder zu entnehmen.

Pool Überwachung

Pool
Überwachung

Erfassung und Bereitstellung der wichtigsten Wasserwerte im lokalen Netzwerk. Gemessen werden pH-Wert, Redox-Potential und Temperatur.
Über eine offene REST API können die Daten in verschiedenen Systemen weiter genutzt werden, alternativ wird eine Webinterface zur Anzeige und Konfiguration bereit gestellt.

EzoGateway

Open source UWP App, to brings the Atlas Scientific EZO™ devices in the Internet of Things. Per REST API you can fetch live measdata and calibrate connected sensors. Ideal for monitoring water quality in the pool.

Project on Github

Hardware

  • Raspberry Pi

    Als Basis dient ein Raspberry Pi mit Windows 10 IoT als Betriebssystem.
    Neben allen benötigten Hardware-Ressourcen, bringt das Raspberry mehr als ausreichend Rechenleistung mit, ist für den Hobbyanwender leicht konfigurierbar und kostet mit 30 Euro kein Vermögen.

  • Atlas Scientific EZO™ Module

    Die etwas diffizile Aufgabe der Wandlung der Ausgangssignale von ph- und Redox-Elektrode übernehmen die EZO™ Module der Firma Atlas Scientific. Diese Module implementieren nicht nur die Digitalisierung, sondern bieten auch Funktionalität zur Kalibrierung und zur Temperaturkompensation.
  • EzoGateway HAT

    a 100przt product

    Um die EZO™ Module sauber mit dem Raspberry Pi zu verbinden kommt eine HAT Erweiterung zum Einsatz. Zwei der auf dem HAT vorhandenen EZO™ Sockel sind elektrisch isoliert und somit für die Module zur pH- und Redox-Potential-Messung geeignet. Zudem verfügt das HAT über eine Spannungsversorgung und eine Mehrkanal 1-Wire-Bridge zum Anschluss günstiger Digital-Temperatursensoren.
  • Elektroden

    Als Elektroden zur pH-Wert- und Redox-Potential-Messung können alle gängigen Typen verwendet werden. Um Fehler zu vermeiden sollten sie jedoch bereits vom Hersteller mit einem BNC-Stecker einschließlich entsprechend langer Leitung versehen sein.
  • Temperaturfühler

    Die eingesetzte EZO™ RTD Schaltung unterstützt PT100 und PT1000 Widerstandsthermometer (RTD). Da der Anschluss am EZO™ Modul nur zweidrahtig erfolgt sollte jedoch unbedingt ein PT1000 verwendet werden, dieser muss auch mit einem BNC-Stecker versehen sein.
    Alternativ können günstige 1-wire Temperaturen am EzoGateway HAT genutz werden.

Software

Windows 10 IoT Core

Als Betriebssystem kommt Windows 10 IoT Core zum Einsatz. Dies ist frei verfügbar und lässt sich schnell und unkompliziert auf dem Raspberry Pi einrichten.
EzoGateway ist als UWP App in Visual Studio entwickelt.


EzoGateway – WebUI

Per Weboberfläche können wichtige Systemeinstellungen vorgenommen werden, Kalibrierungen durchgeführt werden und die aktuellen Messdaten in Echtzeit1 angezeigt werden.

1 Aktualisierung der Messwerte Wandlerbedingt mit ca. 900 ms


EzoGateway – API

Die Bedienung des EzoGateway kann vollständig über die integrierte REST API erfolgen. Neben den grundlegenden Funktionen, Messungen zu initiieren und die Messwerte auszugeben, lassen sich Systemzustände abfragen, Kalibrierungen durchführen, Einstellungen vornehmen und vieles mehr.

Das EzoGateway ist ein DIY Projekt, bestehend aus Hardware und Software, zur Messung der Wasserwerte pH, Redox-Potential (zur Rückführung auf ausreichend Chlor im Wasser) und der Temperatur, wie sie üblicherweise im privaten Pool von interesse sind.

pH-Wert und Redox-Potential messen

pH-Wert und
Redox-Potential
messen

Die EZO™ Serie von Atals Scientific umfasst verschiedene Messumformer zur Medienanalyse. Die Module verfügen über eine digitale Schnittstelle, welche wahlweise im UART oder I2C Modus betrieben werden kann. Über ein schlankes und gut dokumentiertes Protokoll können die Module schnell an die eigene Hardware adaptiert werden. Atals Scientific liefert neben der eigenetlichen Modul-Dokumentation einige Codebespiele für verschiedene Plattformen.

Als C# Enthusiast fehlte mir allerdings eine entsprechende .NET Implementierung. Aus diesem Grund ist die Bibliothek Rca.EzoDeviceLib entstanden. Die Bibliothek bildet den kompletten Funktionsumfang der EZO™ Module ab und nimmt den Anwender somit die gesamte Hardware-Kommunikation ab. Die EzoDeviceLib ist als UWP Dll angelegt und eigent sich somit für den Einsatz auf Windows IoT Systemen, wie dem Rasperry Pi.

Download

Der Sourcecode von Rca.EzoDeviceLib steht auf GitHub, zum freien Download zur Verfügung und wird auf Nuget als fertiges kompiliertes Paket angeboten.

Rca.EzoDeviceLib

Rca.EzoDeviceLib Nuget Paket

Hue Stromstossschalter

Hue Stromstossschalter

Stromstoßschalter sind elektromagnetisch betätigte Schalter. Bei jeder Tasterbetätigung erhält der Stromstoßschalter einen elektrischen Impuls, der eine Schaltzustandsänderung bewirkt, welche bis zum nächsten Impuls mechanisch oder elektronisch gespeichert wird.

Motivation

Um die Vorzüge des Philips Hue Systems auch im Flur zu nutzen gibt es verschiedene Möglichkeiten. Der konventionelle Weg, wie in jeden anderen Raum auch, wäre sicherlich, alle Leuchtmittel gegen Hue kompatible Adequate auszuwechseln und an den gewünschten Schaltstellen Hue Dimming Switches oder Ähnliches zu installieren. Hat man einen großen Flur mit entsprechend vielen Lampen und benötigten Schaltstellen, erhöht sich natürlich der Investitionsumfang nicht unerheblich.
Ich zumindest brauchen im Flur keine besonderen Szenen. Was ich aber nicht missen möchte, gerade im Flur, ist die Coming-Home Funktion. Genau diese Funktionalität, sowie die einfache Hue On/Off Steuerung ist mit der hier vorgestellten Lösung möglich. Die klassische Bedienbarkeit per installierter Tester bleibt dabei erhalten. Einzigste Voraussetzung ist, dass die vorhandene Installation mittels Stromstoßschalter realisiert ist.

Ausgangssituation

Mein Ausgangspunkt sieht wie folgt aus. Flur mit zwei Lampen á drei GU10 Leuchtmittel, installiert sind in meinem Fall Standard-LED-Lampen aus dem Hause Philips (warmweiß, 2700 K, 250 Lumen, nicht dimmbar). Des Weiteren gibt es im Flur 4 Schaltstellen, in Form von einpoligen Installationstastern. Verdrahtet ist das Ganze ohne Abweichungen nach dem Prinzip der Stromstoßschaltung.

230 Volt – Lebensgefahr!

Der gezeigte Schaltplan zeigt schemenhaft die Installation. Als Elektrofachkraft sind mir die Risiken und Gefahren des elektrischen Stomes bekannt und ich warne elektroteschnische Laien ausdrücklich davor, hier selber Hand anzulegen.
Die Phase (L1) liegt parallel an allen Tastern (S*:13) und am Schalteingang (K1:13) des Stromstoßschalters (K1). Wird jetzt ein Tester (S*) betätigt liegt auch am Spuleneingang (K1:A1), des Stromstoßschalters Phase (L1) an und er wechselt seinen Schaltzustand, von AN auf AUS oder von AUS auf AN. Am Schaltausgang (K1:14) sind die zu schaltenden Lampen (H*) in Parallelschaltung angeschlossen.

Gedanke zur Umsetzung

Herzstück der neuen Schaltung soll der Osram Lightify Plug sein. Ein mit dem Philips Hue System kompatibler, schaltbarer Zwischenstecker. Vorteil am Lightify Plug ist der integrierte Taster zur Direktschaltung. Dieser Taster wird genutzt um die bestehende Installation weiterhin nutzen zu können, was auch eines der primären Ziele ist – keine Änderungen an der bestehenden Installation (nur der Stromstoßschalter wird ersetzt). Dem neuen Schaltplan ist dies auch zu entnehmen. Der neue Hue-kompatible Stromstoßschalter verfügt über die selben Anschlüsse und ist somit eins zu eins austauschbar. Zur Ansteuerung steht also ein 230 V Impuls zur Verfügung. Nun könnte man damit einfach ein Relais schalten… Mein Ziel ist es jedoch alles kontakt- und geräuschlos zu halten. Somit wird der Taster am Lightify Plug durch ein PhotoMOS-Relais ersetzt, welches es nun gilt anzusteuern. Es gibt sicherlich verschiedene Wege, die PhotoMOS-Relais Ansteuerung zu bewerkstelligen. Ich habe mich für den Einsatz eines 3 Watt AC/DC Wandler entschieden. Der Wandler aus dem Hause Vigortronix kommt im vergossenen Gehäuse zur Leiterplattenmontage (THT).

Erster Testaufbau

Teardown
Osram – Lightify Plug

Zu Deutsch, jetzt geht´s den Lightify Plug an den Kragen.
Überrascht hat mich beim Öffnen des Gehäuses, dass dies problemlos möglich war, ein passender Torx-Schlüssel genügt. Nicht´s ist verklebt oder gar vergossen. Selbst auf Einweg-Verrastungen hat man verzichtet. So kommt nach dem auseinanderziehen des Gehäuses das Innere zum Vorschein, eine Art Würfel aus Leiterplatten. Im einzelnen sind drei Platinenen je senkrecht aufeinander gelötet.
Auch Qualitativ gibt es keine Überraschung. FA4 Doublelayer-Platinen, zum Teil Reflow- als auch Wellengelötet und per Handlötung zur kompakten Einheit verbunden.
  • Das Innenleben

    Keine Überraschung nach dem Öffnen des Steckers. Die Platinen sind in gewohnter Consumer-Elektronik-Qualität ausgeführt und weißen, soweit sichtbar, keine Mängel auf.
  • Und los geht´s

    Zuerst wurde der Schukostecker entfernt, welcher mittels zwei Kontaktzungen auf der Leiterplatte verlötet ist.
  • Die nackte Platine

    Auch die ausgangsseitigen Anschlusselemente der Schuko-Dose wurden entfernt, sowie die Drahtbrücke zur Schaltplatine.

Projekt verworfen

Inzwischen habe ich das Projekt verworfen. Da ich eine wesentlich eleganteren Lösungsansatz gefunden habe – ein völlig eigener Hue Teilnehmer auf Basis des NXP JN5168, welcher natürlich frei programmierbar ist. Somit konnte auf die Adaption des Osram Plugs verzichtet werden und beim Hardwaredesign gab es auch keine Restriktionen.

Weiterführende Links

Hersteller und Bezugsquellen

  • Osram Lightify

    Smart Home Produkte von LEDVANCE

    Smarthome Lösung von Osram. Eingeschränkt Kompatibel zum Philips Hue System.

    Internetseite

  • Philips Hue

    Personal Wireless Lighting

    Das Philips Hue System stellt, unter den nachrüstbaren Smarthome Derivaten zur Lichtsteuerung, wohl eines der am weitesten verbreiteten Systeme dar.

    Internetseite

  • Farnell element14

    Anbieter von elektronischen Bauteilen

    Gut sortierter Händler für elektronische und elektrische Bauteile. Versand über Partnershops auch an Privatabnehmer.

    Internetseite

  • Osram Lightify Plug

    Kaufen bei Amazon

    Schnell und günstig bekommt man den Lightify Plug bei Amazon

    Internetseite

Copyright © 2020 Elias Ruemmler All Rights Reserved.